The Future of Low Power

Low Power is the Future

Jake Buurma
VP West Coast Operations
Si2, Inc.

Innovation Through Collaboration
Predicting 15 years into the Future is Difficult

“I think there is a world market for maybe five computers”
Thomas Watson, IBM

“There is no reason anyone would want a computer in their home”
Ken Olsen, DEC

“640K ought to be enough memory for anybody”
Bill Gates, Microsoft
Looking back 15 years from 2015

- We stand in the year 2015 and look back to the year 2000
 - Looking into the past from 2015 gives us a much better view
 - Politicians still selectively recall what they knew or what they said
 - We ended the Power Format Wars and started convergence
 - Energy Efficiency became a key metric for data centers & mobile

- We see the trends that began in Year 2000 fully played out
 - New waves of integration were enabled via Block Level reuse
 - Greater process variability required tighter control of chip operation
 - Customers begin to value Low Power more than Clock Speed
 - Millions of transistors finally realize the “SoC” defined in year 2000
Year 2015: The Low Power Agenda

- Why Low Power became the new “Currency” in the electronics industry
- Why the natural (physical) trends in power, performance and manufacturing variability required greater control
- The Format Wars are Over and a New Age has begun!
- Why CPF became the Gold Standard for Low Power Design Intent
In Year 2000: Clock Speed was a “Currency”

Currency = Clock Speed was widely accepted as a quality with a priced value.
But Leakage Became a Much Bigger Issue

![Graph showing power density vs. gate length for different years. The graph indicates that leakage power dominates as gate lengths decrease, with a significant increase in leakage power between Year 1985 and Year 2015.](image-url)
And the World went **GREEN**

Lower Power Reduces Cost of both Operation and Cooling

Bus 2GHz, Clock Speed 2.5GHz
Cache 512KB x2, 65nm
Lower Power is Priced Higher

<table>
<thead>
<tr>
<th>45W</th>
<th>65W</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25</td>
<td>$</td>
</tr>
</tbody>
</table>

Operating Cost 1 in California = \$0.12/KWHr

45W Athlon 4805e vs 65W 4800e list price difference for 65nm AMD Dual Core at 1K units

90W Cooler = \$65
Year 2015: Low Power is the “New Currency”

Currency = Low Power is now widely accepted as a quality with a priced value

Clock Speed (at Power)

- Over Power Bin
- Over Cooling or Over Battery Capacity Limit
- Market Price at Speed Bin

- Leff
- Faster
- Slower

- 3.0 GHz
- 2.0 GHz

Leakage Power Dominates Power Profile

- $20.00 Less
- $15.00 Less

45W

Innovation Through Collaboration
Low-Power Design at AMD

Chip Details:
- SoC has 23 power domains, 21 On/Off, 2 Always-On
- Used footer power switches
- In On/Off tiles, there are Always-On RAMS
- Used AND function isolation cells
- Used always on buffer/inverter
- Two power modes

Approach:
- CPF used as the *Golden Power Intent* across the entire design flow:
 - RTL & gate simulation, implementation, chip assembly, verification
- Top-down hierarchical CPF generation solution:
 - Full-chip CPF & Block-level CPF’s for LP implementation of blocks
- Formal equivalence as low power verification solution across entire design flow:
 - Complete RTL, logical, and physical checking / top-level, block-level, and final chip assembly
Year 2015: The Low Power Future

- Why Low Power became a new “Currency” in the electronics industry
- Why the natural (physical) trends in power, performance and manufacturing variability required greater control
- The Format Wars are Over and a New Age has begun
- Why CPF became the Gold Standard for Low Power Design Intent
Manufacturing Variability was Out-of-Control

Power Variability \(=\) Profitability

Without better control, power variability becomes too large

Low Power Techniques with CPF reduced power variation

Power Variability

Year 1995

Year 2005

Year 2015

Year of Introduction

Innovation Through Collaboration
CPF Reduced Out-of-Control Power Variations

<table>
<thead>
<tr>
<th>Low Power Control Technique</th>
<th>Power Impact</th>
<th>CPF Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimized Buffers, Level Shifters, Isolation</td>
<td>+/- 10%</td>
<td>Define Power Rules, Verify Control</td>
</tr>
<tr>
<td>Clock Tree Optimization and Clock Gating</td>
<td>+/- 20%</td>
<td>IR Drop Limits, Gating Verification</td>
</tr>
<tr>
<td>Multi-Threshold Library Optimization</td>
<td>+/- 30%</td>
<td>Multiple Libraries, Temperature</td>
</tr>
<tr>
<td>Dynamic Voltage Frequency Scaling</td>
<td>+/- 30%</td>
<td>Mode Transitions, Verify Control</td>
</tr>
<tr>
<td>Multi-Voltage Islands with Shut-off, Stand-by</td>
<td>+/- 30%</td>
<td>Power Modes, Illegal Configuration</td>
</tr>
<tr>
<td>Adaptive Body Bias (on leakage current only)</td>
<td>+/- 40%</td>
<td>Define Bias Lines, Verify Control</td>
</tr>
<tr>
<td>ESL Prototype, Verification, Implementation</td>
<td>+/- 60%</td>
<td>Operating Corners, Group Mode/View</td>
</tr>
</tbody>
</table>
Year 2000: New Waves of Integration Began

Body Weight

Exercise

Blood Pressure

Asthma Air Flow

Blood Glucose

Previously Integrated

Alcohol Blood Content
Year 2015: iPhone is the First Medical Tricorder

New

Old

ECG Transmission

Tricorder Model TR-560
New Integration: Hierarchy Support was Key!

Chip Top-Level
- Top Level Integrated CPF’s

Memories
- New IP CPF

Hard IP (RTL/Behavioral)
- New IP CPF

Hard IP (w/RTL or gates)
- Reused IP CPF

Soft IP (RTL)
- Reused IP CPF
Innovation Through Collaboration

New Integration: Low Power Design Intent

Top-Down Hierarchy

Chip Top-Level

Top Level CPF

Block 1

Block 2

Block 3

Block 4

Silicon Integration Initiative
CPF 1.1: Extensions over CPF 1.0

Integration: Hierarchy Enhancements

<table>
<thead>
<tr>
<th>Feature</th>
<th>CPF 1.0</th>
<th>CPF 1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom Up Hierarchy control for third party IP integration and reuse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User defined Macro Models for multiple instances of Block level IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Supplies for State Retention, Isolation Cells, Always-on Buffers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stand-By State Added to Off State and On State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grouping of Power Domains with Group Modes and Group Views</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macro Modeling (Behavioral Level) of Hard IP such as Embedded Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition Slope, Latency and Cycles for Power Domain Transitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User defined assertion of Illegal Power Modes and Illegal Shut Off Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syntax and Semantic Enhancements recommended by the LPC members</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: New Feature ○ Extended Feature ○ **Italics** New CPF Terminology
Year 2015: The Low Power Agenda

- Why Low Power became a new “Currency” in the electronics industry
- Why the natural (physical) trends in power, performance and manufacturing variability required greater control
- The Format Wars are Over and a New Age has begun
- Why CPF became the Gold Standard for Low Power Design Intent
Years 2006 - 2009: The Power Format Wars

- Two giants battled with tremendous powers
- But the low power landscape was severely trampled
- Complex issues are never really **Black** and **White**
 - Both formats had their strong and weak points
 - In the end, cooperation was better for everyone
Interoperability with P1801:

CPF 1.2 File

CPF 1.2 Parser

Translator Functions
- Name mapping
- Power modes and states
- Power supply sets
- Supply functions
- Rules and strategies

P1801 File

P1801 Parser

CPF 1.2 Data Model

Bidirectional Translator

P1801 Data Model
Compatible Subset

1 A subset of P1801 commands cannot be translated. User guidance will be provided until the ambiguities are resolved.
Cooling Down the Power Format Wars

• **Identify a common Command Set used in both P1801 and CPF**
 - Consistently describe Low Power design intent to drive optimization, verification and implementation
 - Bi-directional translation (CPF 1.2 + design) & (P1801 + design)
 - Resolve ambiguities between the compatible subsets

• **Start to converge the data models of P1801 and CPF 1.2**
 - Complete and release a Open Power Data Model specification
 - Provide guidance for commands outside of translatable subset

• **Focus on the Industry Requirements for the best standard**
 - Improve Block Level IP modeling and representation
 - Build a standard that is better than either P1801 or CPF 1.0
 - Incorporate LPC feedback from CPF 1.0 and CPF 1.1

• **Reach out to P1801 Supporters and work together**
 - Many of the original P1801 supporters adopted CPF
Year 2015: The Low Power Agenda

- Why Low Power became a new “Currency” in the electronics industry
- Why the natural (physical) trends in power, performance and variability needed intervention
- The Format Wars are Over and a New Age has begun
- Why CPF became the Gold Standard for Low Power Design Intent
Industry-wide Adoption of CPF

Silicon Integration Initiative

- Industry Leaders
 - FJITSU
 - NEC
 - Freescale
 - NXP
 - STARC
 - WIPRO
 - LSI

- Foundry Reference Flows
 - TSMC
 - UMC
 - SMIC

- IP Vendor Support
 - ARC
 - VIRAGE
 - Linari
 - ARM
 - MIPS
 - Tensilica
 - Sonics

- EDA Integration
 - Cadence
 - Calypso
 - Sequence
 - AFRENIA
 - Azuro
 - Magma

- Design Services
 - Faraday
 - Motech
 - Synopsys
 - Synopsys
 - Cadence
 - Synopsys

- ASIC
 - FJITSU
 - NEC
 - LSI
 - ZIS

Innovation Through Collaboration
It was easy to get started in Advanced Low-Power

A Practical Guide to Low-Power Design

- **Contents:**
 - Low-power methodology
 - Captures collective effort of 36 Power Forward Initiative members
 - 9 User experience chapters by ARM, ARC, Faraday, Freescale, Fujitsu, NEC Electronics, NXP, Sequence and TSMC
 - 3 new chapters published 12/2008

Free download from: www.powerforward.org
5000+ Downloads!
CPF Support Grew a Large Ecosystem

2008 Adoption Aids in the Si2 library:

2009 Adoption Aids in the Si2 library:
Fujitsu Proved it Worked!

Verified with test design
- PSO functional verification with full simulation
- Low power structural and physical check (Shifters/Isolators/Power switches)
- Domain aware place and route

Conclusion
- Functional verification is necessary for complex PSO design for design bugs
- Structural check with CPF could verify LP design
- Fujitsu will support CPF-based ASIC flow for their customers

Silicon Proven in September 2007

- 90nm
- 940K instances
- 11 Power Domains
- 19 Power Modes
What’s in Your Future?

- **CPF Evolution**
 - Complete **CPF 1.2** Enhancement List 10/2009
 - Complete and release the **Open Power Data Model** specification 03/2010

- **CPF Support**
 - Complete all support materials for the **CPF 1.1 Enhancements**
 - Begin Support for CPF 1.2 in 3Q - 4Q/2009

- **CPF Related Events:**
 - Low Power Seminar 05/2009
 - Design Automation Conference: 07/2009
 - EDS Fair 01/2010
Conclusions from the Year 2015

- **CPF was established as the Gold Standard low power format**
 - Adopted world-wide by EDA companies and by 100+ design teams
 - Proven record of success based on first time silicon at Speed & Power

- **CPF evolved as a industry standard driven by the real life requirements from key stake-holders in the LPC**
 - CPF 1.0, CPF 1.1 and CPF 1.2 Enhancement Roadmaps were clearly defined and achieved their target release dates

- **Si2 helped Low Power to become the New Currency**
 - Wiki-based collaborative standards for Low Power Design Web-enabled adoption support for Europe, Asia and United States
 - Rich collection of Low Power adoption aids
 - Multiple Si2-sponsored Low Power events
本当にありがとうございます
Si2 Contacts

For more information, visit:
www.si2.org

Contact:
Sumit DasGupta (dasgupta@si2.org)
Nick English (nenglish@si2.org)
Jake Buurma(jakeb@si2.org)