

Fujitsu's CPF Based Low Power Design Status & Today's Power Format

2009/05/20

Fujitsu Microelectronics Ltd.

Agenda

- Fujitsu's Low Power Design History and Results
- Fujitsu's CPF Low Power Design FlowCPF vs. UPF

Agenda

- Fujitsu's Low Power Design History and Results
- Fujitsu's CPF Low Power Design FlowCPF vs. UPF

Low Power Design History

CPF Low Power Design Flow Merit

Enable short TAT due to easy to design

Agenda

Fujitsu's Low Power Design History and Results

Fujitsu's CPF Low Power Design FlowCPF vs. UPF

CPF Low Power Design Flow

Shut-off Simulation with CPF

Isolator / Level Shifter Insertion

Isolator / Level Shifter are automatically inserted according to CPF spec. by loading netlist and CPF to SoCE.

Logic and Physical Interface

All design intents are not always described in CPF.

Isolation logic equivalence check (1)

Need to verify equivalence between Isolators inserted by SOCE and Isolators virtually inserted by RTL simulation.

Isolation logic equivalence check (2)

FUJITSU

Virtual Isolator (in RTL simulation) verification flow

Isolation logic equivalence check (3)

Plan to verify virtual Isolator using Conformal-LP

Rush Current Control

- The challenges of On Chip Power Gating
 - Supplying enough current to the circuit, realizing small IR-Drop.
 - Controlling Rush current when Power Switches are turned on.

Control of appropriate Power Switch and adjustment of the size are important

COLUMN Type Power Switch vs. RING Type Power Switch FUITSU

	COLUMN Type PSW	RING Type PSW
Area efficiency	Tr size is small	Tr size is large
Routing efficiency	PSW prevents horizontal routing	No routing restriction inside Power Domain
Hard IP	Not applicable	Easy to re-use for power
	Need to re-create physical design for power shut-off	shut-off
Wire Blockage	Power Supply PSW	Corner Cell PSW Filler Cell

Power Switch Insertion and Placement

SOCE can insert & place PSW automatically & accurately based on the specification in CPF

Low Power Check (1)

Low Power Check (2)

Conformal-LP verifies Low Power structure and function

- Is Isolator or Level Shifter inserted correctly?
- Is Isolator's Clamp signal correct?
- Is power supply connected correctly?
- Does Isolator work properly at shut-off mode?

Agenda

- Fujitsu's Low Power Design History and Results
- Fujitsu's CPF Low Power Design FlowCPF vs. UPF

CPF vs. UPF (Spec.)

Specification

CPF

- Both syntax and semantics are managed by Si2.
- Spec. is relatively released earlier, since it is determined by Si2 LPC members only.
- Easy to understand due to simple specification.
- Easy to deploy in a Multi Vendor Flow.

- Syntax is managed by Accellera & IEEE, but semantics are not managed.
- Comprehension of commands and support area are different per vendors.
- Spec. release is slow, since it is determined by many IEEE members.
- Difficult to understand due to ambiguous specification.
- Difficult to deploy in a Multi Vendor Flow.

CPF vs. UPF (Usability)

Usability

CPF

Logic part and physical part can be separated clearly per design phase.

- RTL Simulation can be run with only logic part.
- Easy to deploy for ASIC business.
- Easy to write and understand due to consistent command naming rule such as "create_*" for the rule definition, "update_*" to specify physical info and "set_*" for variable definition.

- Need to describe physical information such as Power net name, Power Port name, Power Switch connection at RTL design phase.
- Difficult to deploy for ASIC business.
- Difficult to write and understand the usage and semantics from the command name.

Comparison description for RTL design

CPF

create_power_domain -name PD0 -default create_power_domain -name PD1 -instances uL1 ¥ _-shutoff_condition uPMU/pso create_isolation_rule -name ISO_PD1 -from PD1 ¥ _-isolation_condition uPMU/isoen create_nominal_condition -name ON -voltage 1.2 create_power_mode -name PM1 -domain_conditions { PD0@ON PD1@ON } -default create_power_mode -name PM2 -domain_conditions { PD0@ON }

Simple & less code size

CPF vs. UPF (Tool Support)

Tool Support

CPF

Practical for actual design project. (already in the brush-up phase)

- Accurate behavior according to power intent specification in CPF.
- Supports Ring Type Power Switch.

- In many case, Tool's native commands are used instead of UPF information to implement Low Power technique.
- Some tools can not distinguish between its native commands and UPF commands.
- No support of Ring Type Power Switch.

CPF vs. UPF (Flow)

Flow

CPF

Can keep using CPF, which was verified at the logic design phase, as a golden CPF throughout the design flow.

UPF

Need UPF equivalence checking at each design phase, since UPF is modified at each design phase.

Conclusions

- Fujitsu developed a reliable Low Power design flow by adopting CPF ahead of the world-wide.
 - Fujitsu appreciates Cadence's effort and expects further cooperation.
- CPF is more practical and has the quality to be de facto standard as Power Format comparing UPF. Fujitsu is expecting further progress of CPF.

THE POSSIBILITIES ARE INFINITE